
10th Meeting OPIMA Specification
Turin Open Platform Initiative for Multimedia Access Version 1.0

99/10/13

OPIMA Specification
Version 1.0

Disclaimer

OPIMA reserves the right to modify the contents of this document according to its procedures for
technical work and without notice. OPIMA makes no claim as to operational integrity of any
implementation derived from this document. This document is provided as is with no warranties
whatsoever.

This OPIMA specification has been developed and published in the framework of the
International Electrotechnical Commission's (IEC) Industry Technical Agreement (ITA)
programme.

OPIMA Specification (Version 1.0) Page 2

Table of Contents

1 Introduction (Informative) 5

2 The OPIMA Architecture (Informative) 6

2.1 Credential mechanisms in the OPIMA environment 7

2.2 Required Trusted Institutions 7
2.2.1 Compartment ID issuance authority 8
2.2.2 Credential issuance authorities 8
2.2.3 IPMP Systems ID issuance authorities 8
2.2.4 OPIMA Peer ID issuance authorities 8
2.2.5 Encryption, Signature and Watermarking ID issuance authorities 8

2.3 Back-end Infrastructure 8

2.4 Protocols 8

3 The OPIMA Architecture (Normative) 10

3.1 OPIMA Protocols 10
3.1.1 First layer: Secure Authenticated Channel 10
3.1.2 Second layer: OPIMA Common Message Protocol 10

3.1.2.1 Open IPMP System download Message 10
3.1.2.2 IPMP System code Messages 10
3.1.2.3 Close of the OPIMA download protocol 11
3.1.2.4 Message IDs 11

3.2 Credential Formats 11

3.3 OPIMA Peer 11
3.3.1 OPIMA Virtual Machine 12
3.3.2 IPMPs 12
3.3.3 Application Services API 12

3.3.3.1 useContent 12
3.3.3.2 getIpmpSystem 14
3.3.3.3 queryOVM 14
3.3.3.4 sendMessageToIPMP 15
3.3.3.5 notifyEvent 15

3.3.4 IPMP Services API 16
3.3.4.1 User Interface methods 16

3.3.4.1.1 sendMessageToUser 16
3.3.4.1.2 receiveMessageFromUser 17

3.3.4.2 Secure Storage Interface 17
3.3.4.2.1 secureStoreData 17
3.3.4.2.2 secureRetrieveData 17
3.3.4.2.3 secureDeleteData 18

3.3.4.3 Encryption and Decryption Engines 18
3.3.4.3.1 queryEncryptionAlgorithms 18
3.3.4.3.2 encrypt 19
3.3.4.3.3 initEncryption 19
3.3.4.3.4 updateEncryptionKeys 19
3.3.4.3.5 stopEncryption 20
3.3.4.3.6 decrypt 20
3.3.4.3.7 initDecryption 20
3.3.4.3.8 updateDecryptionKeys 21
3.3.4.3.9 stopDecryption 21

OPIMA Specification (Version 1.0) Page 3

3.3.4.4 Signature Engines 21
3.3.4.4.1 querySignatureAlgorithms 21
3.3.4.4.2 verifySignature 21
3.3.4.4.3 verifyContentSignature 22
3.3.4.4.4 generateSignature 22
3.3.4.4.5 generateContentSignature 23

3.3.4.5 Watermarking Engines 23
3.3.4.5.1 queryWatermarkAlgorithms 24
3.3.4.5.2 extractWatermark 24
3.3.4.5.3 stopWatermarkExtraction 24
3.3.4.5.4 newWatermark 24
3.3.4.5.5 insertWatermark 25
3.3.4.5.6 stopWatermarkInsertion 25

3.3.4.6 Smart Cards 25
3.3.4.6.1 addCTListener 26
3.3.4.6.2 removeCTListener 26
3.3.4.6.3 getSlotId 26
3.3.4.6.4 isCardPresent 27
3.3.4.6.5 openSlotChannel 27
3.3.4.6.6 closeSlotChannel 27
3.3.4.6.7 getATR 28
3.3.4.6.8 reset 28
3.3.4.6.9 sendAPDU 28
3.3.4.6.10 cardInserted 29
3.3.4.6.11 cardRemoved 29

3.3.4.7 Abstract Access to Content 29
3.3.4.7.1 installCallbackContentAccess 29
3.3.4.7.2 abstractContentAccess 30
3.3.4.7.3 replyToContentAccess 30

3.3.4.8 Abstract Access to Rules 31
3.3.4.8.1 Obtain User Rules 31
3.3.4.8.2 Obtain Content Rules 31
3.3.4.8.3 newRules 32
3.3.4.8.4 updateContentRules 32

3.3.4.9 Abstract Access to OPIMA Peers 33
3.3.4.9.1 openConnection 33
3.3.4.9.2 closeConnection 33
3.3.4.9.3 addConnectionListener 33
3.3.4.9.4 sendMessage 34
3.3.4.9.5 newConnection 34
3.3.4.9.6 receiveMessageFromPeer 35

3.3.4.10 Abstract Access to Applications 35
3.3.4.10.1 installCallbackApplication 35
3.3.4.10.2 replyMessage 35
3.3.4.10.3 receiveMessageFromApplication 36

3.3.4.11 Life-cycle Control 36
3.3.4.11.1 initialize 36
3.3.4.11.2 terminate 36
3.3.4.11.3 remove 36
3.3.4.11.4 update 37

3.3.4.12 Locale interface 37
3.3.4.12.1 getTime 37
3.3.4.12.2 getCountry 37
3.3.4.12.3 getLanguage 37

4 IDL definition of the OPIMA APIs (Normative) 38

5 Annexes (Informative) 42

OPIMA Specification (Version 1.0) Page 4

5.1 Acronyms 42

5.2 Definitions 42

OPIMA Specification (Version 1.0) Page 5

1 Introduction (Informative)
This specification has been produced by OPIMA (Open Platform Initiative for Multimedia
Access), an initiative in the Industry Technical Agreement (ITA) program of the International
Electrotechnical Commission (IEC).

OPIMA has been established for the purpose of enabling a framework where content and service
providers have the ability to extend the reach of their prospective customers and consumers have
the ability to access a wide variety of content and service providers in a context of multiple
content protection systems.

This specification describes the elements of The OPIMA platform. This platform is targeted at
providing value-chain participants with the ability to acquire, supply, process and consume
multimedia services on a global basis in accordance with the rights associated with these
services. This specification specifically addresses intellectual property management and
protection.

This specification presents an architecture and a description of the functions required to
implement an OPIMA-compliant system. Further it presents security protocols and a description
of Application Programming Interfaces (APIs) and functional behaviours that enable
interoperability.

This specification contains four chapters and two Annexes. Chapter 1 is this Introduction.
Chapter 2 provides a description of the OPIMA architecture. Chapter 3 provides the normative
OPIMA specification with definitions of the APIs and a description of their behaviours. Chapter
3 also provides the OPIMA reference model. Chapter 4 is also normative and contains the IDL
definition of the OPIMA APIs. Annexes give acronyms and definitions.

This version 1.0 of OPIMA specification is released for use by interested parties. OPIMA makes
no claim as to operational integrity of any implementation derived from this document. This
document is provided as is with no warranties whatsoever.

OPIMA is keen on receiving comments from implementers and will consider any comment
received. Implementers are advised to consult the OPIMA web site

http://www.cselt.it/opima/

and subscribe to

Opima-ver@kim.cselt.it

To subscribe: send a message to majordomo@kim.cselt.it with “subscribe opima-ver” in the
body of the message.

At a later date OPIMA may specify conformance-testing methodologies. However, actual
conformance tests will not be carried out by OPIMA. This specification may be updated in the
future without notice.

mailto:Opima-ver@kim.cselt.it
mailto:majordomo@kim.cselt.it

OPIMA Specification (Version 1.0) Page 6

2 The OPIMA Architecture (Informative)
This chapter contains an architectural overview of the OPIMA environment. It presents a
framework for inter-operation between OPIMA compliant devices, called OPIMA Peers. The
framework is designed so that code can be executed in the user environment without possibility
to be tampered with by the environment. Therefore the code and associated content can only be
used according to the rules associated with the content. The OPIMA Peer can also be used to
interface with the back-end infrastructure.

The OPIMA specification is device and content independent. Content includes all multimedia
types and executables. The specification is independent of all digital content processing devices
and content types. The term Rules refers to information that stipulates how content may be used
on a given device; specifically, Rules determine how business models are established. An IPMP
(Intellectual Property Management and Protection) system controls access and use of the content
by enforcing the rules associated with it. Conditional access systems are particular examples of
IPMP systems.

Protected Content consists of:
• a content set, which may consist of multiple media types;
• an IPMP system set, which may consist of multiple IPMP systems;
• a rules set that applies under the given IPMP system.

OPIMA acknowledges that there is a world of proprietary domains that have their own
governance structures that are defined by a set of IPMP systems. An example is provided by
traditional Conditional Access systems. OPIMA may be used to enable interoperability among
such system components. OPIMA may also be used as a bridge between proprietary domains.

OPIMA provides tools to exchange a set of authenticated identifiers, called OPIMA Credentials,
to enable Protected Content to flow within and between compartments. When OPIMA peers have
an on-line connection, the OPIMA Credentials can be exchanged prior to the delivery of the
Protected Content. OPIMA Credentials and IPMP Systems can be combined with the Protected
Content when the delivery infrastructure does not support on-line connections (e.g. storage
media, broadcast media). The OPIMA Credentials contain necessary information that may be
used to enable Protected Content flow between compartments. For a given instance of Protected
Content that is intended for consumption in two compartments, a Broadcast conditional access
compartment and an Internet music delivery compartment, OPIMA Credentials from both
compartments are associated with the Protected Content.

OPIMA enables generic interoperability between different applications, devices and IPMP
systems belonging to different compartments. A compartment is a class of OPIMA enabled
devices that share some common elements in their IPMP interfaces and/or architectural
components. For example, DVB can be considered as a compartment, which in turn contains
other compartments defined by specific IPMP system. Content does not necessarily flow between
all compartments, however, OPIMA provides a schema for facilitating content flow between
compartments. Compartments can be hierarchical. That is, a compartment can contain sub-
compartments. OPIMA may also be used to provide interoperability within compartments even
though in this case interoperability may be achieved by different means.

The OPIMA architecture is peer-to-peer. The core OPIMA element is a peer called the OPIMA

OPIMA Specification (Version 1.0) Page 7

Virtual Machine (OVM). OPIMA provides protocols and infrastructure components that enable
secure (trusted) inter-operation amongst these elements. The peer-to-peer interaction based
approach allows the efficient implementation of traditional client-server configurations.

OPIMA protocols are those protocols that enable the establishment of Secure Authenticated
Channels and the downloading of IPMP Systems into the OVM. Proprietary protocols may be
used for the same purpose between peers within a compartment. In this case OPIMA protocols
may also be used. OPIMA protocols must be used to download IPMP Systems between different
compartments. Communication between IPMP Systems installed on OPIMA peers is effected
using proprietary protocols, possibly on top of OPIMA protocols.

The aggregate of secure (trusted) interactions between OVMs represents the OPIMA
environment. However, OVMs need not be continuously connected to the rest of the OPIMA
environment. An OVM is able to function in a connected (one and two-way) and/or disconnected
manner.

2.1 Credential mechanisms in the OPIMA environment
OPIMA uses credentials to enable protected content to flow within and between compartments.
Among other things, these credentials certify:

• OVMs, Applications and IPMP systems.

• Compartment identification. This implies:

• functional capabilities of the compartment, such as cryptographic support, watermarking,
and system renewability, etc.

• security policies of the holder of the credential including the functional capabilities
required by the other peer with which the holder wishes to establish a trusted relationship

2.2 Required Trusted Institutions
The OPIMA specification identifies the need for institutions that manage identifiers, renewable
security and revocation, compliance, etc. These may be managed by third-party private and
public neutral organisations to be determined. OPIMA will not manage these infrastructure
components.
The structure of these institutions, their mandate, and the format of interaction between them
need to be detailed but is outside of the scope of this specification. The trustworthiness of a given
compartment and the trustworthiness of content flow between compartments are enabled by the
flow of credentials and their secure and predictable interpretation by the OPIMA components.
The process conducted by these organisations may include auditing implementations prior to
issuing credentials.
The actual number of trusted institutions will depend on how many authority functionalities a
specific institution will carry out.

OPIMA Specification (Version 1.0) Page 8

2.2.1 Compartment ID issuance authority
Each compartment must be uniquely identified. An authority will be in charge of issuing
compartment IDs.

2.2.2 Credential issuance authorities
The OPIMA Credentials are issued by neutral OPIMA credential authorities, and implicitly
certify the nature of the implementation of the OVM and the device on which it resides and its
capabilities.

2.2.3 IPMP Systems ID issuance authorities
IPMP Systems need to be uniquely identified in order for an IPMP System to be requested,
downloaded and trusted. Companies or organisations may be given the authority to issue IPMP
Systems IDs within an ID assigned by one of these authorities.

2.2.4 OPIMA Peer ID issuance authorities
OPIMA Peers need to be uniquely identified in order to enable secure interaction between them.
Companies or organisations may be given the authority to issue OPIMA Peer IDs within an ID
assigned by one of these authorities.

2.2.5 Encryption, Signature and Watermarking ID issuance authorities
Encryption, Signature and Watermarking algorithms need to be uniquely identified in order for
IPMP Systems and OVMs to communicate among themselves. Only algorithms that are openly
used need to be identified.

2.3 Back-end Infrastructure
In addition to functional components on OPIMA devices, there may be an interface to back-end
processing systems. These include financial, rights and usage clearinghouses. The structure of
these components is proprietary; however, they shall use OVM peers to interface to the OPIMA
environment.

For example, a given compartment may have a network of clearinghouses for the aforementioned
operations. A peer device in this compartment will issue audit trails for transmission to the
clearinghouse components. The audit trails will result in credentials if successful. The OVM at a
given clearinghouse will process the information accordingly. Clearinghouse components may
service multiple compartments simultaneously. The back-end infrastructure may also host the
renewable security and revocation mechanisms.

2.4 Protocols
An important part of the problem set addressed by OPIMA is the secure download of IPMP
systems. In this relationship the peers play the roles of client (Peer C) and server (Peer S). An
initial negotiation occurs, in which unauthenticated information is exchanged to facilitate the
establishment of a Secure Authenticated Channel (SAC). This initial exchange takes place using

OPIMA Specification (Version 1.0) Page 9

non-OPIMA protocols. Then, the OVM establishes the OPIMA peer relationship.

IPMP Services

OPIMA VM

IPMPServices

OPIMA VM

Domain specific transport

OPIMA
protocol

Peer S Peer C

Fig, 1 -OPIMA protocols

For example OPIMA peers in a Client Peer - Server Peer set up can communicate in the
following way:

1. An application requests the OVM to access protected content
2. The OVM requests the OS to establish initial network connections
3. The OPIMA Secure Authenticated Channel is established on top of this connection
4. The required IPMP System is requested and downloaded by the OVM

OPIMA Specification (Version 1.0) Page 10

3 The OPIMA Architecture (Normative)

3.1 OPIMA Protocols
OPIMA protocols are intended to provide a level of interoperability between OPIMA peers. The
OPIMA protocols are divided into two layers:
• The first layer, called secure transport, negotiates and implements a SAC.
• The second layer is the OPIMA common message protocol. It uses the functionality provided

by the SAC layer. The messages interchanged over this protocol allow it to provide the
downloading of IPMP systems services.

3.1.1 First layer: Secure Authenticated Channel
This specification identifies SSL as the reference SAC protocol for inter-compartment
communication. Future versions of OPIMA may provide support for a SAC protocol also usable
in a broadcast environment. The SAC establishment phase is intended to set up the encryption
and decryption mechanisms used by the OVMs (e.g., select a cipher such as DES, select a
chaining mode) to securely transmit IPMP Systems between the two correspondent
communicating peers.

The SAC establishment phase shall also determine which keys for the aforementioned encryption
and decryption mechanisms shall be used.

3.1.2 Second layer: OPIMA Common Message Protocol
The OPIMA Common Message Protocol is used to establish communication between different
compartments.
Such a message consists of a command and optional parameters. These parameters are listed in
the tables below. The number of bits needed for these parameters are given in parentheses.

Each of the tables below includes the messages sent in sequence from “Sender” to “Recipient”.

The length field always refers to the number of bytes of the field immediately following the
length field.

3.1.2.1 Open IPMP System download Message

Sender Reicipient Content
Peer 1 Peer 2 OPEN, length(8), IPMPS_ID (var)

3.1.2.2 IPMP System code Messages

Sender Recipient Content
Peer 2 Peer 1 MSGDTA (8), length(32), message (var)

In a push case Peer 1 will send the content and Peer 2 will receive it.

OPIMA Specification (Version 1.0) Page 11

3.1.2.3 Close of the OPIMA download protocol

Sender Reiceipient Content
Peer 1 Peer 2 CLOSE
Peer 2 Peer 1 CLOSE

Both the party sending the IPMP System and the party receiving it are allowed to send this
message.

3.1.2.4 Message IDs

Message Name Value (binary)
MSGDTA 00000010
OPEN 00000001
CLOSE 00000011

3.2 Credential Formats
This OPIMA 1.0 specification mandates the use of X.509 certificates for credentials. OPIMA is
open to reconsider this choice no later than 30th of June 2000 based on strong evidence from
implementations that another solution, which must be openly accessible, is more suitable for this
purpose.

Identification of compartment and identity of OPIMA peer will be included in the certificate.
An OPIMA credential must have the X.509 v.2 format where "subject" is formatted as a
structure comprising two fields: CompartmentID and PeerID.
Therefore an OPIMA certificate is a X.509 certificate with the following relevant fields:

• Issuer: IssuerID
• Subject: SubjectID

The format of IssuerID is:
OCTET STRING(2). It contains the Certification authority ID.

The format of SubjectID is:
SEQUENCE{CompartmentID OCTET STRING(4), PeerID OCTET STRING(16)}.

3.3 OPIMA Peer
This section describes an OPIMA peer in terms of functional units. Figure 2 depicts the
relationship of the pieces described below.

OPIMA Specification (Version 1.0) Page 12

Application
Services

..

OPIMA Virtual Machine

Native OS & Hardware

IPMP
Services
API

Application
Services

 API

IP
MP
#1

IP
MP
#2

IP
MP
#n

Figure 2: The OPIMA Peer

3.3.1 OPIMA Virtual Machine
The OPIMA peer contains a group of basic functional elements that implement the backbone of
trust. This is called the OVM. The basic functionality of the OVM allows for application-specific
extensions. The OVM is responsible for establishing authenticated, secure channels amongst
OPIMA compliant devices.

3.3.2 IPMPs

IPMPs are processes that implement Intellectual Property Management & Protection Systems
(IPMP-S) inside the OPIMA peer.

3.3.3 Application Services API

The OPIMA Application Services API allows services to communicate with the OVM and the
IPMP system installed in the OVM. It supports the following functionalities:

• Requesting access to content
• Requesting the installation of an IPMP system component in the OVM
• Querying the installed IPMP system components
• Sending messages to the IPMP system components, among which a message to query content

access rights.

The IDL definition of the Application Services API is given in 4.

3.3.3.1 useContent

This method allows services to request that content be made available. The IPMP system decides
whether the request is acceptable.

Input Parameters Values
Content
Identification of the content to
be used.

URL

Content sink
Identification of the sink to
which content is handed off.

URL
If the content sink is NULL, the sink is implied by the
content.It is at the discretion of the IPMP system to decide

OPIMA Specification (Version 1.0) Page 13

whether this sink is acceptable.
Purpose
Indication of the purpose for
which the content is made
available.

Enumeration for this identifier is given in Table 1 (see below).
It is at the discretion of the IPMP system to decide whether this
purpose is acceptable.

IPMPsystemID
Identification of the IPMP
system to be used to make the
content available.

An array of bytes containing a unique ID assigned by a
registration authority.
If the indicated IPMP system is not available in the OVM, the
OVM may try to obtain the corresponding IPMP system
component, depending on OVM policy.
If the IPMP system is NULL, the OVM will decide which
IPMP system to use if any, depending on the OVM policy and
possibly after user interaction.

Return Variable Values
Result 32 bit integer, that can be either positive or negative. A

positive value indicates session ID that can be used by the
application to match subsequent asynchronous responses from
the OVM. Negative values indicate that an error occurred and
the reason of failure.

Asynchronous Responses Values
Success This asynchronous response is issued at the moment that the

content is available. It can be used for synchronisation
purposes.

Failure This asynchronous response is issued at the moment that the
content is not available or is no longer available.
The reason for the failure is embedded:
• Content not found at indicated URL.
• Content sink not available.
• Indicated IPMP system not available.
• Content access disallowed by IPMP system.
• IPMP specific string to be interpreted by the application.
Table of values is given in the IDL definition.

Table 1 - Actions the OVM executes on content

IMPLICIT The purpose is implied by the content source and the content destination
RENDER Rendering the content on the OPIMA Peer
STOP Stop ongoing action
COPY Copy content under control of the IPMP System
MOVE Move content under control of the IPMP System
EDIT Edit content under control of the IPMP System
FORWARD Forward content outside of the OPIMA Peer under the control of the IPMP

System
RELEASE Release content outside of the OPIMA Peer
OTHER Anything else

OPIMA Specification (Version 1.0) Page 14

3.3.3.2 getIpmpSystem

This method allows services to request that an IPMP system component is installed in the OVM.
If the IPMP system is already installed in the OVM, the application is simply registered as a
client of that IPMP system. Note that no compartment indication is passed by the application to
the OVM, since the OVM knows its own compartment.

Input Parameters Values
IPMPsystemID
Identification of the IPMP
system to be installed.

An array of bytes containing a unique ID assigned by a
registration authority.

Source
Identification of the source for
the IPMP system component.

URL
If Source is NULL, then the source is implied by IPMP
System.

Return Variable Values
Result 32 bit integer, that can be either positive or negative. A

positive value indicates session ID that can be used by the
application to match subsequent asynchronous responses from
the OVM. Negative values indicate that an error occurred and
the reason of failure.

Asynchronous Responses Values
Success This asynchronous response is issued at the moment that the

IPMP system component has been successfully loaded.
Failure This asynchronous response is issued at the moment that the

IPMP system component is not available or is no longer
available.
The reason for the failure is embedded:
• IPMP system not present.
• Source not available.
• Downloading refused by source.
• Not enough resources to install.
Table of values is given in the IDL definition.

3.3.3.3 queryOVM

This method allows applications to query the OVM. Query OVM provides the list of IPMP
systems that are applicable to a certain content and gives an indication of which IPMP systems
are already available within the OVM.

Input Parameters Values
ContentId
Identification of the content to
be used

URL

Purpose
Identification of the purpose
for which the content is

Same as in “useContent”

OPIMA Specification (Version 1.0) Page 15

intended to be used
Output Parameters Values
IpmpsID[][]
Output of the function

List of alternative sets of IPMP systems that are needed by the
content in order for the OPIMA peer to perform the intended
“purpose”, associated with the indication of their current status
in the OVM (present/missing). IPMP systems are identified by
IPMP system IDs, as defined above.

Return Variable Values
Result 32 bit integer, that can be either positive or negative. A positive

value indicates session ID that can be used by the application to
match subsequent asynchronous responses from the OVM.
Negative values indicate that an error occurred and the reason
of failure.

3.3.3.4 sendMessageToIPMP

This method allows services to send messages to the IPMP systems installed in the OVM and to
receive answers.

Input Parameters Values
IPMPsystemID
Identification of the IPMP
system to which the message is
addressed.

An array of bytes containing a unique ID assigned by a
registration authority.

Message Type
Identification of the message
type

• Content Query
• IPMP system proprietary
• NULL message (to allow an application register itself as a

receiver of messages without actually sending any
message)

Table of values is given in the IDL definition.
Message • URL (in case of a content query message)

• Data passed to the IPMP component.
Return Variables Values
Result 32 bit integer, that can be either positive or negative. A

positive value indicates session ID that can be used by the
application to match subsequent asynchronous responses from
the OVM. Negative values indicate that an error occurred and
the reason of failure.

Asynchronous Responses Values
Content query response • Content not available.

• String for display to end-user.
• Data

3.3.3.5 notifyEvent

This asynchronous response is issued by the OVM to the application to notify that a certain event

OPIMA Specification (Version 1.0) Page 16

has occurred; it can be used for synchronisation purposes.

Input Parameters Values
SessionID
An identifier provided by the
OVM which refers to the action
to which this is a response

Same value previously returned by either UseContent,
getIpmpSystem, or sendMessageToIPMP.

Status
Indicates success or failure, and
reasons of failure

SUCCESS if status = 0
ErrorCode if status < 0

Message
An IPMP specific string to be
interpreted by the application

Either NULL or an IPMP specific string

3.3.4 IPMP Services API
This section contains the IPMP Services API, this being the interface between the IPMP and the
OPIMA Virtual Machine (OVM). The IPMP Services API is the only way of communication
between the IPMP Systems on the one side and the OVM and the external world on the other
side. An IDL definition of this API is provided in 4.

3.3.4.1 User Interface methods

The purpose of these methods is to obtain information directly from the user. This feature can be
used for non-repudiation.

3.3.4.1.1 sendMessageToUser

Input Parameters Values
MessageText
text to be displayed to the
user.

A string of text

Listener
callback function that
delivers the user response to
the IPMP system.

Function address

Return Variable Values
Status Status > 0:

The returned value is a SessionID provided by the OVM.
Status < 0:

The returned value is an ErrorCode; can be one of:
PERMISSION_DENIED
NO_RESOURCES
WRONG_PARAMETERS

OPIMA Specification (Version 1.0) Page 17

3.3.4.1.2 receiveMessageFromUser

Input Parameters Values
SessionID
Identifier of an action to
which this is a reply

Any positive int value

Response
Text returned by the user
(e.g. a password).

A string of text

3.3.4.2 Secure Storage Interface

This set of functions allows an IPMP system to use storage capabilities provided by the OVM.
Information stored upon an IPMP system request will be made available to other instantiations of
the same IPMP system. The OVM enforces that an IPMP system is not allowed to access
information stored by other IPMP systems. Since memory can be a scarce resource in some
OVM implementations, it is not guaranteed that stored information will persist indefinitely.

3.3.4.2.1 secureStoreData
This function requests OVM to store information contained in an array of bytes. Some OVM
implementations may decide to maintain storage of this information, even when the IPMP system
is terminated.

Input Parameters Values
DataReference
An identifier that allows
different instantiations of the
same IPMP system to access
stored data.

• Enumeration of these identifiers is proprietary to the IPMP
system.

• This parameter is unique per IPMP.

Data
A reference to data to be stored

• This parameter is treated as an unformatted array of bytes,
which are not interpreted by the OVM.

Return Variable Values
Status SUCCESS if Status = 0;

Otherwise one of the following error codes:
METHOD_NOT_AVAILABLE (in this OVM)
INSUFFICIENT_RESOURCES
PERMISSION_DENIED

3.3.4.2.2 secureRetrieveData
This function requests OVM to retrieve information that was previously stored under
DataReference by an instantiation of the calling IPMP system.

OPIMA Specification (Version 1.0) Page 18

Input Parameters Values
DataReference
An identifier that allows
different instantiations of the
same IPMP system to access
stored data.

• Enumeration of these identifiers is proprietary to the IPMP
system.

• This parameter is unique per IPMP.

Buffer
Memory location, where stored
data is copied into.

• This reference is provided by the IPMP system.

Return Variable Values
Status SUCCESS if Status = 0;

Otherwise one of the following error codes:
METHOD_NOT_AVAILABLE (in this OVM)
INSUFFICIENT_RESOURCES (buffer is too small)
NO_DATA
PERMISSION_DENIED

3.3.4.2.3 secureDeleteData
This function requests OVM to destroy information that was previously stored under
DataReference by an instantiation of the calling IPMP system.

Input Parameters Values
DataReference
An identifier that allows
different instantiations of the
same IPMP system to access
stored data.

• Enumeration of these identifiers is proprietary to the IPMP
system.

• This parameter is unique per IPMP.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.3 Encryption and Decryption Engines

The IPMP Systems can access standard cryptographic algorithms (implemented in hardware or
software) through the following functions.

3.3.4.3.1 queryEncryptionAlgorithms

Return Variables Values
AlgorithmList Array of strings indicating the supported encryption and decryption

algorithms.

OPIMA Specification (Version 1.0) Page 19

3.3.4.3.2 encrypt
This method encrypts a set of bytes. It is intended primarily to encrypt management messages.

Input Parameters Values
Algorithm
Identification of the algorithm
used in the encryption.

A text string

Params
The parameters of the algorithm

An array of bytes

Key
The key used in the encryption.

An array of bytes

Input/Output Parameters Values
Data.
Input: the data to be encrypted
Output: the encrypted data

An array of bytes

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.3.3 initEncryption
This method initialises content encryption. The implementation of this method is able to access
content on the basis of the clearContentId parameter. The return variable is a reference to the
encrypted content or (if negative) an error code.

Input Parameters Values
Algorithm
Identification of the algorithm
used in the encryption.

A text string

Params
The parameters of the algorithm

An array of bytes

ClearContentId
Reference to the content stream
that must be encrypted

Integer

Return Variable Values
EncryptedContentId a reference to the encrypted content or (if negative) an error

code.

3.3.4.3.4 updateEncryptionKeys
This method starts or continues content encryption using new or modified keys. An array of keys
is used to allow for key changes.

Input Parameters Values
Keys
The keys used in the encryption.

An array of keys (that is, an array of array of bytes).

ClearContentId
Reference to the content stream

Integer

OPIMA Specification (Version 1.0) Page 20

that must be encrypted
Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.3.5 stopEncryption

Input Parameters Values
ClearContentId
Reference to the content stream

Integer

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.3.6 decrypt
This method decrypts a set of bytes. It is intended primarily to decrypt management messages.

Input Parameters Values
Algorithm
Identification of the algorithm
used in the decryption.

A text string

Params
The parameters of the algorithm

An array of bytes

Key
The key used in the decryption.

An array of bytes

Input/Output Parameters Values
Data.
Input: the data to be decrypted
Output: the decrypted data

An array of bytes

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.3.7 initDecryption
This method initialises content decryption. The implementation of this method is able to access
content on the basis of the clearContentId parameter. The return variable is a reference to the
decrypted content or (if negative) an error code.

Input Parameters Values
Algorithm
Identification of the algorithm
used in the decryption.

A text string

Params
The parameters of the algorithm

An array of bytes

EncryptedContentId Integer

OPIMA Specification (Version 1.0) Page 21

Reference to the content stream
that must be decrypted
Return Variable Values
DecryptedContentId a reference to the decrypted content or (if negative) an error

code.

3.3.4.3.8 updateDecryptionKeys
This method starts or continues content decryption using new or modified keys. An array of keys
is used to allow for key changes.

Input Parameters Values
Keys
the keys used in the decryption.

An array of keys (that is, an array of array of bytes).

EncryptedContentId
Reference to the content stream
that must be decrypted

Integer

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.3.9 stopDecryption

Input Parameters Values
EncryptedContentId
Reference to the content stream

Integer

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.4 Signature Engines

This interface is used by IPMP Systems that wish to use public key cryptography in order to
perform digital signature processing

3.3.4.4.1 querySignatureAlgorithms

Return Variables Values
AlgorithmList Array of strings indicating the supported digital signature algorithms.

A Registration Authority will issue standard identifiers for established algorithms.

3.3.4.4.2 verifySignature
This method verifies a digital signature. It is intended primarily to verify the authenticity of
management messages.

OPIMA Specification (Version 1.0) Page 22

Input Parameters Values
Algorithm
The algorithm used in the
verification.

A text string

Params
The parameters of the algorithm

An array of bytes

PublicKey
The public key used in the
verification.

An array of bytes

Data
The data that has been signed.

An array of bytes

Signature
The digital signature to be
verified

An array of bytes

Return Variable Values
Status TRUE if Status = 1

FALSE if Status = 0
ErrorCode if Status < 0

3.3.4.4.3 verifyContentSignature

This method verifies a digital signature. It is intended to verify the authenticity of content. The
implementation of this method is able to access content on the basis of the contentId parameter.

Input Parameters Values
Algorithm
The algorithm used in the
verification.

A text string

Params
The parameters of the algorithm

An array of bytes

PublicKey
The public key used in the
verification.

An array of bytes

ContentId
reference to the content that has
been signed.

An integer value

Signature
The digital signature to be
verified

An array of bytes

Return Variable Values
Status TRUE if Status = 1

FALSE if Status = 0
ErrorCode if Status < 0

3.3.4.4.4 generateSignature

OPIMA Specification (Version 1.0) Page 23

This method generates a digital signature. It is intended primarily to sign management messages.

Input Parameters Values
Algorithm
The algorithm used in the
verification.

A text string

Params
The parameters of the algorithm

An array of bytes

PrivateKey
The private key used in the
generation.

An array of bytes

Data
The data to be signed.

An array of bytes

Output Parameters Values
Signature
The resulting digital signature

An array of bytes

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.4.5 generateContentSignature

This method generates a digital signature. It is intended to sign content. The implementation of
this method is able to access content on the basis of the contentId parameter.

Input Parameters Values
Algorithm
The algorithm used in the
verification.

A text string

Params
The parameters of the algorithm

An array of bytes

PrivateKey
The private key used in the
generation..

An array of bytes

ContentId
reference to the content that has
been signed.

An integer value

Output Parameters Values
Signature
The resulting digital signature

An array of bytes

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.5 Watermarking Engines

In case the OVM provides access to watermarking engines the following interfaces are used.

OPIMA Specification (Version 1.0) Page 24

3.3.4.5.1 queryWatermarkAlgorithms

Return Variables Values
AlgorithmList Array of strings indicating the supported watermarking algorithms.

A Registration Authority will issue standard identifiers for established algorithms.

3.3.4.5.2 extractWatermark

This method starts watermark extraction from content identified by contentId. If the content is a
stream, watermark extraction can be stopped by calling stopWatermarkExtraction. A call back
interface is used to transfer the watermark.

Input Parameters Values
Algorithm
The watermarking algorithm.

A text string

Params
The parameters of the algorithm

An array of bytes

ContentId
Reference to the watermarked
content

An integer value

Listener
Callback function implemented
by the IPMP System to accept
the asynchronous responses that
would be issued by the OVM
whenever watermark is detected

An identifier of a function

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.5.3 stopWatermarkExtraction

This method stops watermark extraction from a content stream identified by contentId.

Input Parameters Values
ContentId
Reference to the content stream
from which the a watermark is
extracted.

An integer value

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.5.4 newWatermark

OPIMA Specification (Version 1.0) Page 25

This is the call back interface for the watermark engine. It should be implemented by IPMP
components that call the watermark engine.

Input Parameters Values
ContentId
Reference to the watermarked
content

An integer value

Watermark
Value of the extracted
watermark

An array of bytes

3.3.4.5.5 insertWatermark

This method starts watermark insertion into content identified by sourceContentId. The return
variable is the sinkContentId. If the content is a stream, watermark insertion can be stopped by
calling stopWatermarkInsertion.

Input Parameters Values
Algorithm
The watermarking algorithm.

A text string

Params
The parameters of the algorithm

An array of bytes

SourceContentId
Reference to the content to be
watermarked.

An integer value

Return Variable Values
SinkContentId a reference to the watermarked content or (if negative) an

error code.

3.3.4.5.6 stopWatermarkInsertion

This method stops watermark extraction from a content stream identified by contentId.

Input Parameters Values
SourceContentId
Reference to the content to be
watermarked.

An integer value

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.6 Smart Cards

Smart cards accessible through local smart card readers can be accessed by means of this API.

OPIMA Specification (Version 1.0) Page 26

The following two structures represent messages in ISO 7816 format:

struct CommandAPDU
{

byte cla;
byte ins;
byte P1;
byte P2;
int lc; // The length of the data field of the APDU.
int le; // The expected length of the ResponseAPDU.
byte[] data;

}

struct ResponseAPDU
{

byte sw1
byte sw2
byte[] data

}

3.3.4.6.1 addCTListener

This method adds a Card Terminal listener to receive an indication of card insertion or removal
from this card terminal.

Input Parameters Values
Listener
The listener to add

The function address of either cardInserted or
cardRemoved

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.6.2 removeCTListener

Removes a CTListener so it no longer receives CardTerminalEvents from this card terminal

Input Parameters Values
Listener
The CTListener to remove.

The function address of either cardInserted or
cardRemoved

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.6.3 getSlotId

OPIMA Specification (Version 1.0) Page 27

Returns the list of slots belonging to this Card Terminal.

Output Parameters Values
SlotId
The array of slot identifiers.

An array of int

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.6.4 isCardPresent

Checks whether there is a smart card present in a particular slot

Input Parameters Values
SlotId
The slot to check for a card

A positive integer value

Return Variable Values
Status
Indicates if there is a smart card
inserted in the slot.

TRUE if Status = 1
FALSE if Status = 0
ErrorCode if Status < 0

3.3.4.6.5 openSlotChannel

Opens a SlotChannel on Slot number slotID.

Input Parameters Values
SlotId
The number of the slot for
which a SlotChannel is
requested.

A positive integer value

Return Variable Values
Status
Identification of the session to
the smart card or error code.

SlotSessionId if Status > 0
ErrorCode if Status < 0

3.3.4.6.6 closeSlotChannel

Closes a SlotChannel identified by slotSessionId.

Input Parameters Values
SlotSessionId
The smart card session to close.

A positive integer value

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

OPIMA Specification (Version 1.0) Page 28

3.3.4.6.7 getATR
Returns the answer-to-reset (ATR) response of the card inserted in slot slotID.

Input Parameters Values
SlotId
The slot identifier

A positive integer value

Ms
A timeout in milliseconds.

A positive integer value; zero is interpreted as “no timeout”

Output Parameters Values
ATR
The ATR response in form of a
byte array.

An array of bytes

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.6.8 reset
Resets a smart card inserted in a slot.

Input Parameters Values
SlotSessionId
The open slot channel attached
to the slot.

A positive integer value

Timeout
A timeout in milliseconds.

A positive integer value; zero is interpreted as “no timeout”

Output Parameters Values
ATR
The ATR response in form of a
byte array.

An array of bytes

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.6.9 sendAPDU

Sends a command to the smart card and waits for the response.

Input Parameters Values
SlotSessionId
The open slot channel attached
to the slot.

A positive integer value

CommandAPDU
The CommandAPDU to send.

See the “CommandAPDU” structure defined above.

OPIMA Specification (Version 1.0) Page 29

Timeout
A timeout in milliseconds.

A positive integer value; zero is interpreted as “no timeout”

Output Parameters Values
ResponseAPDU
The ResponseAPDU as received
from the card.

See the “ResponseAPDU” structure defined above.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

The following call backs are to be implemented by the IPMP system:

3.3.4.6.10 cardInserted

Notifies that a smart card has been inserted in a slot identified by slotId.

Input Parameters Values
SlotId
The slot identifier.

A positive integer value

3.3.4.6.11 cardRemoved

Notifies that a smart card has been removed from a slot identified by slotId.

Input Parameters Values
SlotId
The slot identifier.

A positive integer value

3.3.4.7 Abstract Access to Content

3.3.4.7.1 installCallbackContentAccess
This function is a request from the IPMP system to the OVM, to install a callback function for
this set of methods.

Input Parameters Values
Listener
Callback function implemented
by the IPMP system to accept an
asynchronous response issued
by the OVM.

An identifier of a function.

Return Variable Values
Status SUCCESS (if Status = 0);

Otherwise one of the following error codes:
INSUFFICIENT_RESOURCES

OPIMA Specification (Version 1.0) Page 30

PERMISSION_DENIED

3.3.4.7.2 abstractContentAccess
This is a previously installed callback function, through which the OVM calls the IPMP system
for a specific purpose. Usually this function should be called by the OVM upon request from the
Application (see useContent function), thus implementing an indirect call of the IPMP system
from an Application.

Input Parameters Values
ContentId
An identifier of the Content.

The result of the translation of the URL that has been passed
from the Application (see useContent function).

Content sink
Identification of the sink to
which content is handed off.

URL
If the content sink is NULL, the sink is implied by the content.
It is at the discretion of the IPMP system to decide whether this
sink is acceptable.

Purpose
An identifier of the purpose to
access content.

• Enumeration for this identifier is given in Table 1 (see
3.3.3.1).

• The OPIMA definition for this enumeration includes a set
of purposes, as well as the possibility to accommodate
proprietary values.

SessionId
An identifier of the session
generated by the OVM

• This value is generated by the OVM and passed as input to
the IPMP system.

• It will be used by replyToContentAccess to identify the
session.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.7.3 replyToContentAccess
This function implements the response from the IPMP System to abstractContentAccess. This
will be translated by the OVM into a call of the “notifyEvent” callback function, which is part of
the Application Services API.

Input Parameters Values
SessionId
An identifier of the session.

This value has been received from the OVM through the call to
abstractContentAccess.

Status
A status indication for the
application

SUCCESS (Status = 0)
ErrorCode (Status < 0)

Message
A reference containing the
requested action.

An array of bytes

OPIMA Specification (Version 1.0) Page 31

Return Variable Values
Status
A status indication for the
IPMP system

SUCCESS if Status = 0
ErrorCode if Status < 0

3.3.4.8 Abstract Access to Rules

In the cases where the content is not directly accessible to an IPMP System in order to be
processed, the rules may be accessed using this interface.

3.3.4.8.1 obtainUserRules
This function retrieves the rules associated with a user.

Input Parameters Values
UserId
An identifier of the user.

This parameter is treated as an unformatted array of bytes.

Listener
An identifier of a function.

Callback function implemented by the IPMP system to accept
the asynchronous response that will be issued by the OVM.

Return Variable Values
Status Status > 0:

The returned value is a sessionId provided by the OVM
to be used by the IPMP system to manage the
asynchronous response.
This implies that the call has been successfully
accepted by the OVM.

Status < 0:
METHOD_NOT_AVAILABLE (in this OVM
implementation)
INSUFFICIENT_RESOURCES
PERMISSION_DENIED
INVALID_PARAMETER

3.3.4.8.2 obtainContentRules
This function retrieves the rules associated with a content.

Input Parameters Values
sourceContentId
An identifier of the content.

This parameter has been passed to the IPMP system in the
abstractContentAccess function.

listener
An identifier of a function.

Callback function implemented by the IPMP system to accept
the asynchronous response that will be issued by the OVM.

Return Variable Values

OPIMA Specification (Version 1.0) Page 32

Status Status > 0:
The returned value is a sessionId provided by the OVM
to be used by the IPMP system to manage the
asynchronous response.
This implies that the call has been successfully
accepted by the OVM.

Status < 0:
METHOD_NOT_AVAILABLE
INSUFFICIENT_RESOURCES
PERMISSION_DENIED
INVALID_PARAMETER

3.3.4.8.3 newRules
This is a callback function implemented by the IPMP system. The intended use of this function is
a listener for either obtainContentRules or obtainUserRules. The SessionId is used to associate a
request to a response.

Input Parameters Values
SessionId
An identifier of the
asynchronous session between
the IPMP system and the
OVM.

This parameter has been received as a return value from
obtainUserRules or obtainContentRules.

Buffer
An identifier of the rules
requested.

Requested rules.
Buffer will be reused by the OVM.

Note: To prevent memory leakage in the OVM, content in the Buffer parameter should be copied
into the IPMP system memory space before returning from this callback function.

3.3.4.8.4 updateContentRules
This function updates the rules associated with a content.

Input Parameters Values
SinkContentId
An identifier of the sink for the
content.

Any integer value

Buffer
An identifier of a function.

Buffer contains the update rule that must be forwarded to the
Content sink.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

OPIMA Specification (Version 1.0) Page 33

3.3.4.9 Abstract Access to OPIMA Peers

The purpose of this interface is to exchange IPMP system proprietary management and control
messages between OPIMA peers. This interface can also be used for communication between
local IPMP Systems.

3.3.4.9.1 openConnection
This method opens a connection to an OPIMA peer.

Input Parameters Values
Peer
URL of the destined OPIMA
peer.

An URL (a special case is “localhost”)

IPMPsystemID
Identification of the destined
IPMP system.

An array of bytes containing a unique ID assigned by a
registration authority.

ConnectionSpec
specification of the connection to
be opened.

The connection specification ID specifies which type of
connection to use
• ID=0 cleartext
• ID=1 OPIMA SAC
• ID > 1 compartment specific

Listener
A function which listens to
messages sent by the other peer

Function reference

Return Variable Values
Status
Either an identification of the
connection or an error code

ConnectionId if Status > 0
ErrorCode if Status < 0

3.3.4.9.2 closeConnection
This method closes a connection to an OPIMA peer.

Input Parameters Values
ConnectionId
Identification of the connection as
returned earlier by the
openConnection method.

A positive integer value.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.9.3 addConnectionListener
This method installs a listener for new connections that other OPIMA peers try to establish.

Input Parameters Values
Peer An URL

OPIMA Specification (Version 1.0) Page 34

URL of the originating OPIMA
peer. If NULL, all OPIMA peers
can establish a connection.
IPMPsystemID
Identification of the originating
IPMP system.

An array of bytes containing a unique ID assigned by a
registration authority.

Listener
A function which listens to
connection requests from other
OPIMA Peers

Function reference

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.9.4 sendMessage
This method sends a message on the designated connection.

Input Parameters Values
ConnectionId
identification of the connection
as returned earlier by the
openConnection method.

A positive integer value.

Message
Message to send.

An array of bytes.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

The following call backs are to be implemented by the IPMP system.

3.3.4.9.5 newConnection
This method signals the establishment of a new connection.

Input Parameters Values
Peer
URL of the originating OPIMA
peer.

An URL

IPMPsystemID
Identification of the destined
IPMP system.

An array of bytes containing a unique ID assigned by a
registration authority.

ConnectionId
Identification of the connection.

A positive integer value.

Return Variable Values
Status
Status indication provided by the
IPMP system to the OVM.

SUCCESS if Status = 0
ErrorCode if Status < 0

OPIMA Specification (Version 1.0) Page 35

3.3.4.9.6 receiveMessageFromPeer
This method receives a message on the designated connection.

Input Parameters Values
ConnectionId
Identification of the connection as returned
earlier by the openConnection method.

A positive integer value.

Message
The received message.

An array of bytes.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.10 Abstract Access to Applications

Applications may access the local IPMP Systems if the IPMP Systems have previously installed
the appropriate callback via this interface.

3.3.4.10.1 installCallbackApplication
This is an IPMP System request to the OVM to install a callback function for the application.

Input Parameters Values
Listener
The listener of messages.

The function address of receiveMessageFromApplication

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.10.2 replyMessage
The IPMP system replies to a message received by means of a receiveMessageFromApplication
callback with this method.

Input Parameters Values
SessionId
An identifier received in a
receiveMessageFromApplication to
which this is a response.

A positive integer value

Status
Indicates success or failure, and
reasons of failure.

SUCCESS if Status = 0
ErrorCode if Status < 0

Message
An IPMP specific string to be
interpreted by the application.

Either NULL or an IPMP specific string

Return Variable Values

OPIMA Specification (Version 1.0) Page 36

Status SUCCESS if Status = 0
ErrorCode if Status < 0

The following callback is to be implemented by the IPMP system:

3.3.4.10.3 receiveMessageFromApplication
Callback function by which the application can access the IPMP system (via the OVM). It is the
OVM which calls the IPMP system by means of this method.

Input Parameters Values
SessionId
An identifier provided by the
OVM which refers to this action.

A positive integer value.

MessageType
An IPMP specific string to be
interpreted by the IPMP.

An enumeration type with three values:
CONTENT_QUERY, PROPRIETARY_MESSAGE,
NULL_MESSAGE.

Message
An IPMP specific string to be
interpreted by the IPMP.

Either NULL or an IPMP specific string.

3.3.4.11 Life-cycle Control

This interface is used to control the execution state of the IPMP System. The following functions
are to be implemented by IPMP systems for the purpose of life cycle control:

3.3.4.11.1 initialize
This method is called immediately after installation of the IPMP system. It allows the IPMP
system to take care of any necessary installation procedures.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

3.3.4.11.2 terminate
This method is called before de-installation of the IPMP system. It allows the IPMP system to
take care of all necessary termination procedures. After this method has returned, the IPMP
system will be removed from the OVM.

Return Variable Values
Status SUCCESS if Status = 0

ErrorCode if Status < 0

The following functions are to be implemented by the OVM for the purpose of life cycle control:

3.3.4.11.3 remove
This method removes the IPMP system upon its request. It never returns.

OPIMA Specification (Version 1.0) Page 37

3.3.4.11.4 update
This method removes the current instance of the IPMP system and requests downloading of a
new instance. It never returns.

Input Parameters Values
Source
Identification of the source for
the new IPMP system.

A URL.

3.3.4.12 Locale interface

This interface lets an IPMP system component running on top of an OVM know in a secure way
where and when it is running.

3.3.4.12.1 getTime
This method returns either an error number (if negative) or the number of seconds since "the
Epoch" (the time 0 hours, 0 minutes, 0 seconds, January 1, 1970 Coordinated Universal Time -
UTC). This introduces a discontinuity (a Y2K-like problem) in year 2038 that must be handled
by the IPMPS component making use of this function.

Return variable Values
Status Time information if Status >= 0

ErrorCode if Status < 0

3.3.4.12.2 getCountry
This method returns either an empty string or an uppercase ISO 3166 2-letter code representing
the country for which the OVM has been configured.

Return variable Values
Country NULL or an uppercase ISO 3166 2-letter country code

3.3.4.12.3 getLanguage
This method returns either an empty string or the language code for this OVM, which will be a
lowercase ISO 639 code.

Return variable Values
Language NULL or a lowercase ISO 639 language code

OPIMA Specification (Version 1.0) Page 38

4 IDL definition of the OPIMA APIs (Normative)
/*
 * IDL definition of the OPIMA interfaces.
 * Note: the OPIMA peer is composed by Applications, IPMP systems, and the OPIMA VM.
 * The Applications implement: ApplicationServicesListener, ErrorCodes.
 * the IPMP systems implement: all the IPMP Listeners interfaces, ErrorCodes.
 * the OPIMA VM implements: ApplicationServices, all the IPMP Services interfaces, ErrorCodes.
 */
module OPIMA {

/*--- return values (positive values); these can be either Boolean values or Session IDs
---*/

interface BooleanResult {
const long IS_TRUE = 1;
const long IS_FALSE = 0;

};

interface SessionResult {
const long SUCCESS = 0;

};

/*--- error codes (negative values). These can be extended for compartment specific
errors ---*/

interface ErrorCodes {
const long CONTENT_NOT_FOUND = -1; // Content not found at the indicated

URL.
const long SINK_NOT_AVAILABLE = -2; // Content sink not available.
const long CONTENT_ACCESS_NOT_ALLOWED = -3; // Content access prohibited by IPMP

System
const long UNKNOWN_SOURCE = -4; // Source could not be

reached / source unknown
const long BUSY_SOURCE = -5; // Source not available at this

moment / source busy
const long INVALID_SOURCE = -6; // Source was not

authenticated as a valid source for the requested IPMP system.
const long IPMPS_NOT_AVAILABLE = -7; // Requested IPMP system is not

available at the source.
const long DOWNLOAD_NOT_ALLOWED = -8; // Source refuses to download the

IPMP system to this OPIMA peer.
const long INSUFFICIENT_RESOURCES = -9; // Insufficient resources to

perform the requested action.
const long TIMEOUT_EXPIRED = -10; // A timeout expired before

completion of the task.
const long PERMISSION_DENIED = -11; // The requested action is not

allowed.
const long WRONG_PARAMETER_1 = -12; // Error in first parameter
const long WRONG_PARAMETER_2 = -13; // Error in second parameter
const long WRONG_PARAMETER_3 = -14; // Error in third parameter
const long WRONG_PARAMETER_4 = -15; // Error in fourth parameter
const long WRONG_PARAMETER_5 = -16; // Error in fifth parameter
const long METHOD_NOT_AVAILABLE = -17; // The requested function has

not been implemented on this OVM
const long CARD_NOT_PRESENT = -18; // The smart card has been removed
const long COMMUNICATION_ERROR = -19; // Transmission error between the

terminal and the smart card
const long RULES_NOT_AVAILABLE = -20; // The OVM was not able to extract

rules from content
const long CANNOT_UPDATE_RULES = -21; // The OVM was not able/allowed to

modify rules
const long APPLICATION_TERMINATED = -22; // The application was terminated

};

/*--- complex types used as method parameters in more than one interface ---*/

typedef string URL;
typedef sequence <octet, 256000> Buffer;
typedef sequence <string, 1024> List;
typedef sequence <octet, 255> IPMPSid;

enum Purpose {IMPLICIT, RENDER, STOP, COPY, MOVE, EDIT, FORWARD, RELEASE, OTHER};
enum MessageType {CONTENT_QUERY, NULL_MESSAGE, PROPRIETARY_FORMAT};

/*-------- listeners defined in Application Services ---------*/

interface ApplicationServicesListener {
void notifyEvent(in long sessionId, in long status, in Buffer message);

};

OPIMA Specification (Version 1.0) Page 39

/*-------- Application Services ---------*/

interface ApplicationServices {
struct IPMPSidContainer {

IPMPSid id;
boolean exists;

} ;

typedef sequence<sequence<IPMPSidContainer,256>, 256> IPMPSidContainerList;

long useContent(in URL contentSource, in URL contentSink, in Purpose purpose, in
IPMPSid id, in ApplicationServicesListener listener);

long QueryOVM(in URL contentId, in Purpose p, out IPMPSidContainerList l);
long getIpmpSystem(in IPMPSid id, in URL source, in ApplicationServicesListener

listener);
long sendMessageToIPMP(in IPMPSid id, in MessageType mt, in Buffer message, in

ApplicationServicesListener listener);
};

/*-------- listeners defined in IPMP Services ----------*/

interface UI_Listener {
void receiveMessageFromUser(in long sessionId, in string response); // user

interface
};

interface WE_Listener {
void newWatermark(in long contentId, in Buffer watermark); // watermark engine

};

interface SC_Listener {
void cardInserted(in long slotId); // smart card
void cardRemoved(in long slotId); // smart card

};

interface AAC_Listener {
long abstractContentAccess(in long contentSourceId, in URL contentSink, in

Purpose purpose, in long sessionId); // abstract access to content
};

interface AAR_Listener {
void newRules(in long sessionId, in Buffer buffer); // abstract access to

rules
};

interface AAP_Listener {
long newConnection(in URL peer, in IPMPSid id, in long connectionId);

// abstract access to Peers (SAC)
long receiveMessageFromPeer(in long connectionId, in Buffer message);

// abstract access to Peers (SAC)
};

interface AAA_Listener {
void receiveMessageFromApplication(in long sessionID, in MessageType mt, in Buffer

message); // abstract access to application
};

/* this is the only mandatory interface that must be implemented in an IPMPS component */

interface LCC_Listener {
long initialize(); // life-cycle control
long terminate(); // life-cycle control

};

/*--------- IPMP Services ----------*/

interface UserInterface {
long sendMessageToUser(in string messageText, in UI_Listener listener);

};

interface SecureStorage {
long secureStoreData (in long dataReference, in Buffer buffer);
long secureRetrieveData(in long dataReference, out Buffer buffer);
long secureDeleteData (in long dataReference);

};

interface EncryptionEngine {
typedef sequence <Buffer, 1024> KeyList;

OPIMA Specification (Version 1.0) Page 40

List queryEncryptionAlgorithms();
long encrypt(in string algorithm, in Buffer params, in Buffer key, inout Buffer

data);
long initEncryption(in string algorithm, in Buffer params, in long

clearContentId);
long updateEncryptionKeys(in KeyList keys, in long clearContentId);
long stopEncryption(in long clearContentId);
long decrypt(in string algorithm, in Buffer params, in Buffer key, inout Buffer

data);
long initDecryption(in string algorithm, in Buffer params, in long

encryptedContentId);
long updateDecryptionKeys(in KeyList keys, in long encryptedContentId);
long stopDecryption(in long encryptedContentId);

};

interface SignatureEngine {
List querySignatureAlgorithms();
long verifySignature(in string algorithm, in Buffer params, in Buffer publicKey,

in Buffer data, in Buffer signature);
long verifyContentSignature(in string algorithm, in Buffer params, in Buffer

publicKey, in long contentId, in Buffer signature);
long generateSignature(in string algorithm, in Buffer params, in Buffer

privateKey, in Buffer data, out Buffer signature);
long generateContentSignature(in string algorithm, in Buffer params, in Buffer

privateKey, in long contentId, out Buffer signature);
};

interface WatermarkEngine {
List queryWatermarkAlgorithms();
long extractWatermark(in string algorithm, in Buffer params, in long contentId, in

WE_Listener listener);
long stopWatermarkExtraction(in long contentId);
long insertWatermark(in string algorithm, in Buffer params, in long

sourceContentId);
long stopWatermarkInsertion(in long sourceContentId);

};

interface SmartCard {
typedef sequence <long, 1024> SlotIdList;

/* these structures declare Application Protocol Data Units as defined in ISO 7816
*/

struct CommandAPDU {
octet cla;
octet ins;
octet p1;
octet p2;
short lc;
short le;
sequence <octet, 65535> data;

};

struct ResponseAPDU {
octet sw1;
octet sw2;
sequence <octet, 65535> data;

};

long addCTListener(in SC_Listener listener);
long removeCTListener(in SC_Listener listener);
long getSlotId(out SlotIdList slotId);
long isCardPresent(in long slotId);
long openSlotChannel(in long slotId);
long closeSlotChannel(in long slotSessionId);
long getATR(in long slotId, in long ms, out Buffer ATR);
long reset(in long slotSessionId, in long ms, out Buffer ATR);
long sendAPDU(in long slotSessionId, in CommandAPDU capdu, in long ms, out

ResponseAPDU rapdu);
};

interface AbstractAccessToContent {
long installCallBackContentAccess(in AAC_Listener listener);
long replyToContentAccess(in long sessionId, in long status, in Buffer message);

};

OPIMA Specification (Version 1.0) Page 41

interface AbstractAccessToRules {
long obtainUserRules(in Buffer userId, in AAR_Listener listener);
long obtainContentRules(in long sourceContentId, in AAR_Listener listener);
long updateContentRules(in long sinkContentID, in Buffer buffer);

};

interface AbstractAccessToPeers {
long openConnection(in URL peer, in IPMPSid id, in long connectionSpecId, in

AAP_Listener listener);
long closeConnection(in long connectionId);
long addConnectionListener(in URL peer, in IPMPSid id, in AAP_Listener listener);
long sendMessage(in long connectionId, in Buffer message);

};

interface AbstractAccessToApplications {
long installCallBackApplication(in AAA_Listener listener);
long replyMessage(in long sessionId, in long status, in Buffer message);

};

interface LifeCycleControl {
void remove();
void update(in URL source);

};

interface Locale {
long getTime();
string getCountry();
string getLanguage();

};
};

OPIMA Specification (Version 1.0) Page 42

5 Annexes (Informative)

5.1 Acronyms
API Application Programming Interface
DVB Digital Video Broadcasting
ID Identity
IPMP Intellectual Property Management & Protection
MPEG Moving Picture Experts Group
OVM OPIMA Virtual Machine
SAC Secure Authenticated Channel
TS Transport Stream (i.e. MPEG-2 Transport Stream)
URL Uniform Resource Locator

5.2 Definitions

Compartment A class of OPIMA enabled devices that share some common elements in
their IPMP interfaces and/or architectural components.

Content All digital data representing audio, graphics, text, video and associated
metadata

IPMP System The system which protects and manages intellectual property rights
associated with content.

Credentials A set of authenticated identifiers, certifying the compartment ID and the
peer ID;

OVM A group of basic functional elements that implement a secure execution
environment for IPMP Systems

OPIMA Peer An implementation of the OPIMA specification running on a device
Protected Content Content protected by an IPMP System with associated Rules.
Rules Statements that govern the way a specific piece of content protected by

an IPMP System can be managed

	Introduction (Informative)
	The OPIMA Architecture (Informative)
	Credential mechanisms in the OPIMA environment
	Required Trusted Institutions
	Compartment ID issuance authority
	Credential issuance authorities
	IPMP Systems ID issuance authorities
	OPIMA Peer ID issuance authorities
	Encryption, Signature and Watermarking ID issuance authorities

	Back-end Infrastructure
	Protocols

	The OPIMA Architecture (Normative)
	OPIMA Protocols
	First layer: Secure Authenticated Channel
	Second layer: OPIMA Common Message Protocol
	Open IPMP System download Message
	IPMP System code Messages
	Close of the OPIMA download protocol
	Message IDs

	Credential Formats
	OPIMA Peer
	OPIMA Virtual Machine
	IPMPs
	Application Services API
	useContent
	
	
	
	Content
	Content sink
	Purpose
	IPMPsystemID
	Result
	Success
	Failure

	getIpmpSystem
	
	
	
	Source
	Result
	Success
	Failure

	queryOVM
	
	
	
	ContentId
	Purpose
	Result

	sendMessageToIPMP
	
	
	
	Message Type
	Message
	Content query response

	notifyEvent
	
	
	
	Status
	Message

	IPMP Services API
	User Interface methods
	sendMessageToUser
	
	
	Listener
	Return Variable
	Status

	receiveMessageFromUser
	
	
	Response

	Secure Storage Interface
	secureStoreData
	
	
	Data
	Return Variable
	Status

	secureRetrieveData
	
	
	Buffer
	Return Variable
	Status

	secureDeleteData
	
	
	Return Variable
	Status

	Encryption and Decryption Engines
	queryEncryptionAlgorithms
	encrypt
	
	
	Algorithm
	Params
	Key
	Data.
	Status

	initEncryption
	
	
	Algorithm
	Params
	ClearContentId
	EncryptedContentId

	updateEncryptionKeys
	
	
	Keys
	ClearContentId
	Status

	stopEncryption
	
	
	ClearContentId
	Status

	decrypt
	
	
	Algorithm
	Params
	Key
	Data.
	Status

	initDecryption
	
	
	Algorithm
	Params
	EncryptedContentId
	DecryptedContentId

	updateDecryptionKeys
	
	
	Keys
	EncryptedContentId
	Status

	stopDecryption
	
	
	EncryptedContentId
	Status

	Signature Engines
	querySignatureAlgorithms
	verifySignature
	
	
	Algorithm
	Params
	PublicKey
	Data
	Signature
	Status

	verifyContentSignature
	
	
	Algorithm
	Params
	PublicKey
	ContentId
	Signature
	Status

	generateSignature
	
	
	Algorithm
	Params
	PrivateKey
	Data
	Signature
	Status

	generateContentSignature
	
	
	Algorithm
	Params
	PrivateKey
	ContentId
	Signature
	Status

	Watermarking Engines
	queryWatermarkAlgorithms
	extractWatermark
	
	
	Algorithm
	Params
	ContentId
	Status

	stopWatermarkExtraction
	
	
	ContentId
	Status

	newWatermark
	
	
	ContentId
	Watermark

	insertWatermark
	
	
	Algorithm
	Params
	SourceContentId
	SinkContentId

	stopWatermarkInsertion
	
	
	SourceContentId
	Status

	Smart Cards
	addCTListener
	
	
	Listener
	Status

	removeCTListener
	
	
	Listener
	Status

	getSlotId
	
	
	SlotId
	Status

	isCardPresent
	
	
	SlotId
	Status

	openSlotChannel
	
	
	SlotId
	Status

	closeSlotChannel
	
	
	SlotSessionId
	Status

	getATR
	
	
	SlotId
	Ms
	ATR
	Status

	reset
	
	
	SlotSessionId
	Timeout
	ATR
	Status

	sendAPDU
	
	
	SlotSessionId
	CommandAPDU
	Timeout
	ResponseAPDU
	Status

	cardInserted
	
	
	SlotId

	cardRemoved
	
	
	SlotId

	Abstract Access to Content
	installCallbackContentAccess
	
	
	Return Variable

	abstractContentAccess
	
	
	Content sink
	Purpose
	SessionId
	Return Variable
	Status

	replyToContentAccess
	
	
	Status
	Message
	Return Variable
	Status

	Abstract Access to Rules
	obtainUserRules
	
	
	Listener
	Return Variable
	Status

	obtainContentRules
	
	
	listener
	Return Variable
	Status

	newRules
	
	
	Buffer

	updateContentRules
	
	
	Buffer
	Return Variable
	Status

	Abstract Access to OPIMA Peers
	openConnection
	
	
	Peer
	IPMPsystemID
	ConnectionSpec
	Status

	closeConnection
	
	
	ConnectionId
	Status

	addConnectionListener
	
	
	Peer
	IPMPsystemID
	Status

	sendMessage
	
	
	ConnectionId
	Message
	Status

	newConnection
	
	
	Peer
	IPMPsystemID
	ConnectionId
	Status

	receiveMessageFromPeer
	
	
	ConnectionId
	Message
	Status

	Abstract Access to Applications
	installCallbackApplication
	
	
	Listener
	Status

	replyMessage
	
	
	Status
	Message
	Status

	receiveMessageFromApplication
	
	
	SessionId
	MessageType
	Message

	Life-cycle Control
	initialize
	
	
	Status

	terminate
	
	
	Status

	remove
	update
	
	
	Source

	Locale interface
	getTime
	
	
	Status

	getCountry
	
	
	Country

	getLanguage
	
	
	Language

	IDL definition of the OPIMA APIs (Normative)
	Annexes (Informative)
	Acronyms
	Definitions

